Iterative Methods for Pseudocontractive Mappings in Banach Spaces

نویسندگان

  • Jong Soo Jung
  • Yisheng Song
چکیده

and Applied Analysis 3 Lemma 1 (see [1, 2]). Let E be a Banach space and let J be the normalized duality mapping on E. Then for any x, y ∈ E, the following inequality holds: 󵄩󵄩󵄩󵄩x + y 󵄩󵄩󵄩󵄩 2 ≤ ‖x‖ 2 + 2⟨y, j (x + y)⟩, ∀j (x + y) ∈ J (x + y) . (14) Lemma 2 (see [20]). Let {s n } be a sequence of nonnegative real numbers satisfying s n+1 ≤ (1 − λ n ) s n + λ n δ n , ∀n ≥ 0, (15) where {λ n } and {δ n } satisfy the following conditions: (i) {λ n } ⊂ [0, 1] and ∑∞ n=0 λ n = ∞ or, equivalently,

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On The Convergence Of Modified Noor Iteration For Nearly Lipschitzian Maps In Real Banach Spaces

In this paper, we obtained the convergence of modified Noor iterative scheme for nearly Lipschitzian maps in real Banach spaces. Our results contribute to the literature in this area of re- search.

متن کامل

The Convergence Theorems for Common Fixed Points of Uniformly L-lipschitzian Asymptotically Φ-pseudocontractive Mappings

In this paper, we show that the modified Mann iteration with errors converges strongly to fixed point for uniformly L-Lipschitzian asymptotically Φ-pseudocontractive mappings in real Banach spaces. Meanwhile, it is proved that the convergence of Mann and Ishikawa iterations is equivalent for uniformly L-Lipschitzian asymptotically Φpseudocontractive mappings in real Banach spaces. Finally, we o...

متن کامل

Convergence Analysis of an Iteration Scheme for Lipschitz Strongly Pseudocontractive Mappings

CONVERGENCE ANALYSIS OF AN ITERATION SCHEME FOR LIPSCHITZ STRONGLY PSEUDOCONTRACTIVE MAPPINGS Shin Min Kang Department of Mathematics, Gyeongsang National University, Jinju 660-701, KOREA [email protected] Arif Rafiq Hajvery University, 43-52 Industrial Area, Gulberg-III, Lahore, Pakistan [email protected] ABSTRACT In this paper, we establish the strong convergence for the Agarwal et al. [1] ite...

متن کامل

Convergence theorems of multi-step iterative algorithm with errors for generalized asymptotically quasi-nonexpansive mappings in Banach spaces

The purpose of this paper is to study and give the necessary andsufficient condition of strong convergence of the multi-step iterative algorithmwith errors for a finite family of generalized asymptotically quasi-nonexpansivemappings to converge to common fixed points in Banach spaces. Our resultsextend and improve some recent results in the literature (see, e.g. [2, 3, 5, 6, 7, 8,11, 14, 19]).

متن کامل

Viscosity Approximation Methods and Strong Convergence Theorems for the Fixed Point of Pseudocontractive and Monotone Mappings in Banach Spaces

Suppose that C is a nonempty closed convex subset of a real reflexive Banach space E which has a uniformly Gateaux differentiable norm. A viscosity iterative process is constructed in this paper. A strong convergence theorem is proved for a common element of the set of fixed points of a finite family of pseudocontractive mappings and the set of solutions of a finite family of monotone mappings....

متن کامل

A new approximation method for common fixed points of a finite family of nonexpansive non-self mappings in Banach spaces

In this paper, we introduce a new iterative scheme to approximate a common fixed point for a finite family of nonexpansive non-self mappings. Strong convergence theorems of the proposed iteration in Banach spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014